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Abstract. A Widom form of the equation of state taking into account non-Landau invariants
for triglycine sulphate (TGS) ferroelectric is proposed. The experimental values of the invariant
Q and the exponentsδ andγ are crucial for the determination of this equation. It is shown to
be not derivable from the existing theories based on the renormalization group andε-expansion
and represents very well the experimental susceptibility data above and belowTC . The analytical
properties of the proposed theory are compared with Landau and Domb–Hunter expansions. A
method of determining the invariantQ from the experimental susceptibility scaling function is
demonstrated on TGS and deuterated triglycine selenate ferroelectrics used as examples.

1. Introduction

Phase transitions near the critical point are described by a set of parameters called critical
invariants [1–4]. We have in mind critical exponents, definite combinations of critical amp-
litudes for spontaneous polarization, susceptibility, specific heat and the amplitude describing
the power-law dependence relating the external electric field,E, to the polarization,P , at the
critical point(T = TC) etc. Most of these invariants concern the behaviour of the polarization,
the susceptibility and the specific heat in zero field. There are as well universal constants
characterizing the behaviour of these quantities in non-zero electric field, like the exponents
δ and1, and the Watson [5] andQ-invariants [6]. A direct theoretical calculation and/or
experimental measurement of the zero-field invariants does not require the knowledge of the
equation of state but it is indispensable in the theory for determining invariants such asδ,1

and in particularQ. Even though the invariantQ does not occur explicitly, likeδ does, in the
known theoretical equations of state [1–3, 7–9], its value depends strongly on the functional
form of the equation of state since it is calculated by equating to zero the third-order derivative,
∂3G(τ,E)/∂E2 ∂τ , of the Gibbs potentialG [6].

Analysing the experimental data on the susceptibility,χ , measured at a fixed electric field,
E, for continuous phase transitions [6] or at a constant distance from the critical isopolare for
discontinuous ones [10], it is very useful to investigate the ratio [6]

Q = χ(τm, 0)/χ(τm,E) (0)

whereτm = Tm/Tc−1 is the reduced temperature at which the susceptibility,χ(τ,E), reaches
a maximum at constant field,E, on changingτ above the critical temperatureTc (Tm > Tc).
If Q is independent ofE, it will become the non-zero-field critical invariant [6]. Any system
with a constant value ofQ has to satisfy the static scaling hypothesis [6]. Knowledge of
the experimental value ofQ is very important if one is to find the best approximate equation
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of state for the system investigated, as a very strong relation between (i) the value ofQ

and the non-linearities, generated by inserting particular susceptibility experimental scaling
functions into the sequence of test equations of state (derived from the Domb and Hunter
scaling hypothesis [3]), and (ii) particular experimental data has been ascertained [11,12].

The most obvious, but trivial way to calculateQ is to do it using the definition [6]. There
are, however, some disadvantages: (1) we need a lot of characteristics to achieve sufficient
statistics for calculating a reliable value ofQ; (2) the fits of the characteristics have to be
perfect, which is not always easy to achieve; (3) measurements are often carried out at fixed
temperatures, which makes this method useless.

The algorithm presented in this paper is free from the above drawbacks and is applied to
TGS and DTGSe ferroelectrics. It is based on the experimental susceptibility scaling function,
which can be created using constant-field or isothermal measurements for continuous phase
transitions which happen to occur in TGS ferroelectric. If the transition is a discontinuous
one, like in DTGSe ferroelectrics [13], an appropriate scaling function can be constructed
from isothermal data only [10]. A determination of the invariantQ from the experimental
scaling function is in fact an estimation of the mean valueQ from all measurements made at
constant field or constant temperatures simultaneously. Let us point out that the calculation of
Q from one particular isotherm, in contrast to one constant-field characteristic, is impossible.

The authors of [14] have concluded that their isothermal experimental data on the
polarization versus the electric field above and belowTC for TGS ferroelectric scale according
to the Landau equation of state. On the other hand, there are experimental data [15–17]
on the initial susceptibility for TGS ferroelectric which contradict the consequences of the
Landau equation of state. From this theory it follows that the ratio(0+/0−) of the critical
amplitudes of the susceptibility in zero electric field above (0+) and below (0−) TC is equal
to 2. Additionally, a different invariant,Q, also takes the value 2 [6], while the experimental
observations deliver values larger and smaller than 2 for the quotient0+/0− [16,17] andQ [6],
respectively. The following values: 2.3, 2.42, 2.7 and 3.0 of0+/0− for TGS ferroelectric were
observed. The departures from the Landau theory [16,17] for this invariant were confirmed [18]
as well. These initial susceptibility results hint that one can expect deviations from the
Landau equation of state if it is transformed to the equivalent form putting together the initial
susceptibilityχ0 (=χ(T , 0)), the non-zero-field susceptibilityχ(T ,E) and the external field
E. Such equations, reported in [19,20], were used in [18] to provide clear evidence against the
applicability of Landau theory to TGS ferroelectric: namely, that the isothermal experimental
susceptibility data for the paraelectric and ferroelectric phases do not form one straight line (see
figure 2 in [18]) when inserted into the corresponding Landau equation of state, equation (3a)
or (3b) in [18]. The observed splitting of isotherms with their small non-linearities just goes
to show that the exponentδ 6= 3 and higher-order terms are expected in the equation of state.
The results from [18] are consistent with the earlier ones [11, 12, 21] where non-linearity of
the Landau equation of state, expressed in terms of the ratioχ0/χ versusEχδ/(δ−1)

0 , was stated
for the non-Landau value 3.17 of the exponentδ. Moreover, a non-Landau value 1.87 of the
invariantQ was observed [6]. Let us sum up the main experimental results for TGS invariants
arising from susceptibility investigations:γ = 1,δ = 3.17,Q = 1.87,0+/0− > 2. Therefore
all of these invariants with the exception ofγ appear to be non-Landau ones. So, small
deviations from the Landau theory of continuous phase transitions cannot be derived from any
theory based on the renormalization group andε-expansion [7,8] or from the analysis of series
expansions by means of Padé approximants for Ising and Heisenberg models. The logarithmic
corrections to the classical exponents in the Larkin–Khmelnitskii equation of state [22] were
approximately replaced by small exponents(�1) in [21], but this has not produced linearity of
the above equation of state for the TGS experimental susceptibility data. The equation obtained
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was similar to the Domb–Hunter one [3], which represents critical behaviour and contains no
crossover phenomena but is restricted to the high-temperature phase without any possibility
of passing to belowTC . It is a limiting case of the Widom equation of state due to the Griffiths
analyticity condition [2]. The non-linearity appearing in the modified Landau equation of
state [21] was explained in [11, 12] as coming from the relatively small contribution of the
P 6-power with respect to lower-order terms in the framework of the Domb–Hunter expansion.
We show in this paper that the competition of theP 4- andP 6-terms from [11,12] in the scaling
can be replaced with one power|P |δ+1, with the exponent valueδ + 1 (=4.17) between 4 and
6. This new model of the free energy consisting of two ingredients,P 2 and|P |δ+1, is simpler
than previous ones based on Domb–Hunter scaling [3] and Larkin–Khmelnitskii [22] theories
and represents very well all deviations from Landau theory. Furthermore, the equation of state
proposed in this paper manifests itself in the Griffiths structure [2] of the Widom [1] equation
of state, i.e., it is able to represent simultaneously both high- and low-temperature phases.

First, in section 2 we present a new model for TGS ferroelectric leading to non-Landau
values of the basic critical invariants and susceptibility scaling function. In section 3 we
show how to calculateQ from the polynomial fit of the scaling function for TGS and DTGSe
ferroelectrics. The present theory is compared to Landau and Domb–Hunter ones in the fourth
section where we also show that a non-integer exponentδ leads to non-analytical susceptibility
aboveTc. Watson invariants are worked out there in the framework of the proposed model for
both phases.

2. The scaling hypothesis for TGS ferroelectric

Let us consider the following model of the free energy:

F = 1

2
C2τP

2 +
1

δ + 1
Cδ+1|P |δ+1 (1)

where the absolute value causesF to be an even function ofP and the exponentδ is permitted
to take on real values,δ > 1.5. This model is postulated to give the exponentγ = 1 (cf. equ-
ation (4)) which agrees with the experimental value for TGS ferroelectric [16–18]. Assuming
additionally the experimental value 3.17 [6] for the exponentδ, it is shown (cf. equation (11))
that the invariantQ takes the value 1.85, which is very close to the experimental one, 1.87 [6],
while the invariant0+/0− is equal to 2.2 (cf. equation (13)), which is not far from the lowest
experimental value, 2.3 [16]. Expression (1) leads to the equation of state

E = ∂F/∂P = P(C2τ +Cδ+1|P |δ−1) (2)

and the inverse susceptibility(χ = ∂P/∂E)
1/χ = C2τ + δCδ+1|P |δ−1 (3)

whereC2 andCδ+1 are assumed to be positive constants,τ = T/Tc − 1 and the exponentδ
characterizes the power-law relation between the electric fieldE and the polarizationP on the
critical isothermτ = 0.

Equation of state (2) can be rewritten in the scaling form of Widom and Griffiths [1, 2]:
E = P |P |δ−1g(z), with g(z) = Cδ+1 + C2z, wherez = τ/|P |1/β , γ = 1, δ = 3.17,
β = γ /(δ − 1) = 0.46 (see also section 4). Close inspection of the literature [7, 8] clearly
indicates that the Widom and Griffiths forms of the equation of state and invariants in the
zero-order approximation(ε = 0, d = 4) of the renormalization group method have the
Landau form. However, there is a significant difference between the corresponding results in
the first-order approximation(ε = 1, d = 3) and those for TGS ferroelectric reported above.
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Thus the proposed equation of state (2) is excluded and cannot be derived from the existing
theories [7,8]. This indicates a non-perturbative nature for equation (2) for TGS ferroelectric.

Equations (1)–(3) contain the known mean-field cases of continuous phase transitions:
Landau critical(δ = 3, γ = 1, β = 0.5), tricritical (δ = 5, γ = 1, β = 0.25) and higher-
order critical points [11], as well as the percolation problem [23](δ = 2, γ = 1, β = 1),
which is equivalent to the s-state Ashkin–Teller–Potts (ATP) model [24]. The exponentδ is an
integer in the above mean-field theories. In this paper we consider two ferroelectric systems
(TGS and DTGSe with nearly 100% deuterium content) with non-integerδ and show equations
(1)–(3) to be nearly exact for TGS ferroelectric. Equation (1) will be non-analytical in the
order parameter,P , if δ is not an integer, because practically all derivatives ofF with respect
to P are divergent when the critical point(P = 0, τ = 0, E = 0) is approached.

There is one solution (paraelectric),P = 0, of equation (2) aboveTc (τ > 0) atE = 0.
Therefore the zero-field susceptibility,χ+

0 , takes the form of the Curie–Weiss law:

1/χ+
0 = C2τ

γ γ = 1 T > Tc (4)

which has been evidenced experimentally for TGS ferroelectric [16–18]. Having eliminated
the polarization from equation (3) and temperature,τ , using equation (4), one can transform
equation of state (2) to the scaling form

K(δ, χ+
0 /χ) = (χ+

0 /χ − 1)(χ+
0 /χ + δ − 1)(δ−1) = δδCδ+1E

(δ−1)
(χ+

0 )
δ (5)

which describes a system in the paraelectric phase(T > Tc). Such an equation of state whereτ
is expressed in terms ofχ+

0 and the polarization byχ(τ,E) has not previously been reported, to
the best of our knowledge, within the renormalization group approach for any case. It follows
from this formula that the ratioχ/χ+

0 is a function ofE(χ+
0 )
δ/(δ−1):

χ/χ+
0 = f (x) x = E(χ+

0 )
a a = δ/(δ − 1) = 1/γ (6)

where the gap exponent1 determines [6] the power-law relation,E ∝ τ1m , between the electric
field E and temperature(τm) of the maximum ofχ . It is impossible to find an explicit form
of f (x) for an arbitrary value ofδ in the case of relation (5). Equation (6) results also from
the scaling hypothesis [1–3,6], which is independent of any particular model.

We now derive an equation forQ = χ+
0 (τm)/χ(τm,E), differentiating the first and the

second relations in equation (6) with respect toτ assuming a constant fieldE and∂χ/∂τ = 0.
It is given by

G(x) = f (x) + ax df (x)/dx = 0. (7a)

Having estimated the root,x0, of the algebraic equationG(x) = 0, one can calculateQ from
the scaling functionf :

Q = 1/f (x0). (7b)

Another form

x = (δδCδ+1)
−1/(δ−1)(1/f − 1)1/(δ−1)(1/f + δ − 1) (8)

of equation (5) is very useful for finding the functionG(x). Taking into account relations (6)
and differentiating the last equation with respect tox, we get the result

df (x)/dx = −[(δδCδ+1)
1/(δ−1)/a]f 3(1/f − 1)(1−1/(δ−1)) (9)

for the derivative of the functionf .
Equations (8) and (9) can be used to derive the functionG defined in equation (7a) in the

parametric form

G(x) = f 2[f (δ − 1)− (δ − 2)] (10)
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wherex is to be calculated using equation (8) andf to be varied in the interval [0, 1]. If
G(x0) = 0, the expression in the square brackets in equation (10) will vanish. Then the
invariantQ may be expressed in terms of the exponentδ:

Q = (δ − 1)/(δ − 2) (11)

derived from equation (7b). This simple relation betweenQ andδ holds only for the two terms
of the free energy in (1) and will become more complicated when additional components
appear on the right-hand side of equation (1). Formula (11) providesQ for the following
theoretical cases: Landau critical(Q = 2), tricritical (Q = 4/3) and higher-order critical
points [11]. Using the mean-field free energy close toTc for the ATP model from [24], and
equation (11), we predictQ to be undefined(Q = ±∞) in this case and in the percolation
problem(δ = 2). Of course, fluctuations should make this value finite. Their influence is that
of adding higher-order terms on the right-hand side of equation (1).

The experimental value ofδ for TGS ferroelectric was found to be the same in constant-
temperature [25] and constant-field [6] measurements,δ = a/(a − 1) ' 3.17 (a = 1.46).
Inserting it into equation (11) and using equation (7b), we obtainf (x0) = 0.54 and the
theoretical valueQth = 1.85, which is very close to the experimental one [6],Q = 1.87,
for the system considered. The small difference,1Q = Q − Qth = 0.02, indicates that
the free-energy model (1) represents the TGS ferroelectric almost exactly. This prediction is
confirmed in figure 1(a) showing the functionK from equation (5) versusEδ−1(χ+

0 )
δ as the

straight (solid) line. Here, the experimental data forχ+
0 , χ,E andδ ('3.17) in the form (6)

of the scaling function from [25] have been used and are represented in figure 1(a) as open
circles. The coefficient of proportionality,δδCδ+1, in equation (5) is estimated as

δδCδ+1 = 5.0241× 10−22 mδ−1 V−(δ−1) (12)

using linear regression. Inserting this value andf (x0) = 0.54 into equation (8), we find the root
x0 = 2.346×1010 V m−1 of equation (7a). The point [x0, f (x0)] of the scaling functionf (x)
represented by the cross in figure 1(b) generates maxima of all constant-field characteristics.
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Figure 1. (a) The functionK(δ, χ+
0 /χ) from equation (5) versusEδ−1(χ+

0 )
δ for TGS experimental

data(χ+
0 , χ,E, a = 1.46, δ = (a/(a − 1)) taken from [25]: open circles—experimental data;

solid line—fitting ofK to a straight line with the coefficient,δδCδ+1, given in equation (12). (b) The
functionsf (x) andG(x) calculated from equations (6), (8), (10) and (12).
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Here, the functionsf (x) andG(x) from equation (10) are plotted as solid lines, wherex has
been calculated according to equations (12) and (8), varyingf in the interval [0, 1]. The
point in figure 1(a) marked by the cross is linked to the corresponding one in figure 1(b) as
follows: [xδ−1

0 ,K(δ,1/f (x0))]. These points show the corresponding location of the universal
constantQ.

Now we show that the invariant0+/0− calculated from the model (1) and for the
experimental valueδ = 3.17 is greater than 2. AssumingE = 0 in equation (2) we find
the spontaneous polarization

|P | = [(C2/Cδ+1)(−τ)]β β = 1/(δ − 1) = 0.46.

Inserting this expression into equation (3) we get the zero-field susceptibility(χ−0 ):

1/χ−0 = C2(δ − 1)(−τ)
belowTC . Taking into account this formula and equation (4) we obtain the universal constant

0+/0− = δ − 1' 2.2. (13)

Using the above formula forχ−0 and (3), one can rewrite equation of state (2) in the following
scaling form belowTc:

(χ−0 /χ − 1)[χ−0 /χ + 1/(δ − 1)]1/(δ−1) = (δδCδ+1)
1/(δ−1)E(χ−0 )

δ/(δ−1). (13a)

The experimental invariantsδ andQ for the DTGSe ferroelectrics have been obtained
previously [10] and are given by

δ = 1.5 Q ' 1.2 DTGSe. (14)

We now demonstrate that the model (1) cannot describe this system correctly. The arguments
are the following. Let us calculate the theoretical value ofQ in this case from (11) taking the
foregoing experimental value ofδ. We obtain the resultQth = −1 for the DTGSe system. It
does not agree with its experimental counterpartQ reported in equation (14). Therefore one
cannot expect linearity of the functionK from equation (5) versusE(δ−1)(χ+

0 )
δ when inserting

intoK the corresponding experimental scaling functions in the form (6) from [10]. The non-
linearity ofK for the DTGSe system should be very strong because a substantial difference
between the experimental,Q, and theoretical,Qth, values is detected in this case:1Q = 2.2.
It can be predicted by modifying the method described in section 4, from [11], for the present
functionK from equation (5) (i.e., assuming thatK = d1x+d2x

2) that the functionK is convex
for Q > Qth. And this is confirmed in figure 2. In consequence, an equation of state for the
DTGSe system will be more complicated than one for the TGS system. Additional higher-
order terms must be included on the right-hand side of equation (1) to achieve linearity ofK.
It should be mentioned that scaling with exponents of similar character(2 > β > γ > 1)
to those for the DTGSe system has been discovered in the quantum Sr1−xCaxTiO3 (SCT)
ferroelectrics [27] recently. There is also a theoretical paper [9] where the possibility of the
exponentβ being greater than 1 is encountered in connection with an investigation of the
equation of state for Ising-type random-bond spin glass in 6− ε dimensions with the aid of
renormalization group recursion relations.

In this section, arguments have been given regarding how important knowledge of the
experimental value ofQ is. In the next section we demonstrate a way of determiningQ from
the experimental scaled data.
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Figure 2. The functionK(δ, χ+
0 /χ) from equation (5) versusEδ−1(χ+

0 )
δ for DTGSe experimental

data(χ+
0 , χ,E, a = 3, δ = (a/(a − 1)) taken from [10]: open circles—experimental data.

3. Q and the experimental scaling function

Now we will show how to calculateQ from the experimental scaling functionf if the exact
equation of state is unknown. Let us suppose that the functionf (x) can be fitted very smoothly
by anN th-order polynomial

f (x) =
N∑
n=0

Anx
n (15)

where the coefficients,An, remain to be determined from polynomial regression. Using
equations (15) and (7a), we obtain the following polynomial representation of the function
G(x):

G(x) = A0 +
N∑
n=1

(1 +an)Anx
n (16)

wherea is the experimental invariant linked toδ in the third of relations (6).
In figure 3 we show the experimental scaling functionf (open circles) for TGS [25] and

DTGSe [10] ferroelectrics. Let us point out that the experimental data in figure 3(b) represent
the right-hand branch(E = h > 0) of the unsymmetrical scaling function from figure 5 in [10]
because maxima (and the invariantQ) are generated only at positive, constant distances,h,
from the critical isopolare; cf. figure 4 in [10]. The continuous lines correspond to eighth-
order polynomial fits carried out using the least-squares method. The fitting coefficients,
An, from equation (15) are next inserted into equation (16) to give the functionG(x). It is
plotted in figure 3 as a solid line. The solutions,x0, of equation (7a) and corresponding values
f (x0) are displayed in figure 3 in square brackets, [x0, f (x0)]. Qth is then calculated from
formula (7b): Qth = 1.85 and 1.18 for TGS and DTGSe ferroelectric, respectively. The results
obtained agree very well with experimental ones in all cases considered, as there are very small
differences1Q = Q−Qth = 0.02 and 0.02 for TGS and DTGSe crystals, respectively. We
have checked thatx0 is relatively stable with increasing order of polynomial, so we may treat
its value as reliable.
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Figure 3. The scaling functionf (x) from equation (6): open circles—experimental data; solid
line—eighth-order polynomial fit (15); and the functionG(x) calculated according to equation (16)
with the fitting coefficient,An, from equation (15) and experimental data(χ+

0 , χ,E, a, δ), for:
(a) TGS from [25]; (b) DTGSe from [10].

Examining the diagrams in figure 3 one can fault the functionsG for their irregular
behaviour for large arguments and the existence of additional finite solutions of equation (7a).
In figure 3(a) we show two roots. They would appear also in figure 3(b) if a further order in the
fitting polynomials were considered. These results contradict the one value ofQ observed in
the experiments [6,10,26]. Therefore the polynomial fittings off (x) in figure 3 are not good
enough to give a sufficiently correct approximation of its derivative in equation (7a). The true
picture ofG(x) for DTGSe crystal should be similar to that displayed in figure 1(b) for the
TGS sample whereG(x) exhibits one finite root and then gains a negative minimum going
afterwards to zero asx tends to infinity. To obtain such a behaviour for DTGSe crystal, the
appropriate exact equation of state is required.

4. Consequences of non-integerδ

There is a difference between mean-field theory and the Landau theory of phase transitions.
The traditional free energy of the mean field can be expanded into an infinite series (also called
the Landau expansion)

Fm = 1

2
C2τP

2 +
∞∑
n=2

1

2n
C2nP

2n (17)

whereC2n are constant coefficients while the Landau theory of continuous phase transitions
is represented only by the first two terms of this series (C2 > 0, C4 > 0):

FL = 1

2
C2τP

2 +
1

4
C4P

4. (18)
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This expression describes the Landau universality class with the following basic critical
invariants: γ = 1, β = 1/2, δ = 3, 1 = 3/2, 0+/0− = 2 andQ = 2. If just the
coefficientsC2 andC6 are assumed to be different from zero, this will lead to the Landau
theory of the tricritical point with the fundamental critical invariants:γ = 1, β = 1/4, δ = 5,
0+/0− = 4 andQ = 4/3. It is also possible to consider further cases with two coefficients
different from zero:C2 6= 0 andC2n 6= 0 for n = 4, 5, . . .. The enumerated two-component
combinations guarantee the scaling whereas ones with three and more components which
must include theP 2-term do not satisfy the scaling demands because of their multicriticality
(crossover phenomena) [11].

Therefore, subsequences with three and more ingredients from the series (17) (for instance
combinations ofP 2-, P 4- andP 6-terms) are not suitable for the description of a physical
system (like our TGS one) whose experimental data have been presented in the form of a
scaling function; this is an indication that the system may have just one critical point. To
depict such an object using a series like (17), the multicriticality must be removed. This has
been done by Domb and Hunter [3]. Investigating high-temperature series expansion for the
Ising model by means of Padé approximants, they predicted the following form of the free
energy:

FDH = 1

2
C2τ

γ P 2 +
∞∑
n=2

1

2n
C2nτ

(2n−1)γ−2(n−1)1P 2n (19)

which characterizes behaviour with only one critical point. It should be pointed out that the
exchange ofC2n in (17) forC2nτ

(2n−1)γ−2(n−1)1 in (19) eliminates the multicriticality involved
in this equation. The multiplication of the temperature coefficients byP 2n arises from short-
range-order interactions. The exponents ofτ in theP 4-, P 6- andP 8-terms have the following
values: 0.08,−0.84,−1.76 for the experimental valuesγ = 1, δ = 3.17,1 = 1.46 used in
this paper: the higher the index (2n) of P , the more negative the exponent ofτ . If we cut the
series (19) off at theP 6-term, the susceptibilityχ would vanish atTc in non-zero electric field,
but this contradicts the experimental power law,χ ∼ E−(δ−1)/δ, at Tc. Such an unphysical
result would be avoided if the sum of the infinite number of divergent terms in equation (19)
were able to give the power lawE ∼ P |P |δ−1, i.e., finite values atTc. Moreover, the series
(19) possesses a branch point which makes going belowTc impossible. Fortunately, Widom’s
proposal [1] in the Griffiths-disguised form [2]E = P |P |δ−1g(z) (wherez = τ/|P |1/β) of the
equation of state shows how to go from above to belowTc, making simultaneous description of
high- and low-temperature phases possible. Here the functiong(z) should be a real, positive
and analytic one forz in the interval(z0,∞), wherez0 < 0 and the conditiong(z0) = 0 defines
the boundary separating the one- and two-phase regions. This border is a curve on the(P, τ )

plane represented by the formulaz0 = τ/|P |1/β for zero-field (spontaneous) polarization. The
functiong(z) can be transformed to the form

|P |−δ
∞∑
n=1

C2nτ
(2n−1)γ−2(n−1)1|P |2n−1

for τ > 0 andP > 0 according to equation (15) in the paper [2] by Griffiths. Multiplying the
above series byP |P |δ−1 one obtains the same equation of state as arises from the Domb and
Hunter free energy (19).

The present equation of state (2) can be rewritten in the Griffiths form [2]

E = P |P |δ−1 g(z) g(z) = Cδ+1 +C2z z = τ/ |P |1/β (20)

whereγ = 1, δ = 3.17, β = γ /(δ − 1) = 0.46. Thusg(z) is a real, positive and analytic
function forz in the intervalz0 < z <∞, wherez0 = −Cδ+1/C2—that is, it meets the demands
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given on page 180 in [2]. The series (19) can have physical meaning if all of its terms that are
divergent atτ = 0 are the effects of a special function expansion with its finite value atTc. In
this case the function (19) does not diverge at the critical point (P = 0, τ = 0, E = 0) like the
functions (1) and (20). However, all the derivatives of fifth and higher orders with respect to
P of the free energies (19) and (1) are divergent at the critical point (P = 0, τ = 0, E = 0).
Therefore we have sufficient grounds for stating that the free energy (1) with two terms does
not represent the infinite series (17) for the mean field. One could have the impression that the
series (19) is a good effective interpolation for (1) aboveTc for P > 0. We show below that
such thinking is erroneous. The susceptibility series calculated from (19) should be a function
of E2 while that derived from (1) is found below to depend onEδ−1.

The component|P |δ+1 in equation (1) causes divergencies of susceptibility derivatives of
third and higher order to arise at the limitE = 0. This is clear from equation (5), where the
electric fieldE appears with the even, non-integer exponentδ−1= 50/23' 2.17,Eδ−1. This
is why the susceptibilityχ has to be expanded not in powers ofE2 but in powers ofH = Eδ−1

as follows:

χ = χ+
0 + χ+

1H
1 + χ+

2H
2 + χ+

3H
3 + · · · H = Eδ−1 T > Tc. (21)

This series can be expressed in terms of invariantsW +
n = χ+

n+1(χ
+
0 )
n/(χ+

1 )
n+1 (n = 1, 2, . . .),

proportional to Watson ones [5], aboveTc:

χ/χ+
0 = 1 +y +

∞∑
n=1

W +
n y

n+1 y = Hχ+
1 /χ

+
0 . (22)

Inserting this sum into formula (5) and expanding the expression (χ+
0 /χ + δ + 1)δ−1 in powers

of y, one can obtain the formulae

χ+
1 /χ

+
0 = −(δCδ+1/C

δ
2)/τ

1(δ−1) (23)

and

W +
1 = (2δ − 1)/δ

W +
2 = (9δ2 − 9δ + 2)/(2δ2)

W +
3 = (32δ3− 48δ2 + 22δ − 3)/(3δ3)

(24)

for a few initial invariantsW +
n by comparing the coefficients on the two sides of (5) for the

same powers ofy. The values of these quantities for the Landau model (18) and the TGS one
(δ = 3.17)are the following:W +

1 = 5/3' 1.67,W +
2 = 28/9' 3.11,W +

3 = 59/9' 6.11 and
W +

1 ' 1.68,W +
2 ' 3.18,W +

3 ' 6.32, respectively. There are also two sets of Watson invariants
below and atTc, but we restrict ourselves to the low-temperature case. From equation (13a) it
is clear that susceptibility forT < Tc is a function ofE, i.e., it can be expanded in powers of
E as follows:

χ = χ−0 + χ−1 E
1 + χ−2 E

2 + χ−3 E
3 + · · · T < Tc. (25)

One can introduce the low-temperature invariants,W−n = χ−n+1(χ
−
0 )

n/(χ−1 )
n+1 (n = 1, 2, . . .),

proportional to Watson ones, into the series (25):

χ/χ−0 = 1 +y +
∞∑
n=1

W−n y
n+1 y = Eχ−1 /χ−0 . (26)

Inserting this sum into the left-hand side of equation (13a) and expanding it in powers ofy we
find the relation

χ−1 /χ
−
0 = −[δ/(δ − 1)](Cδ+1/C

δ
2)

1/(δ−1)/(−τ)1 (27)
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and a few invariantsW−n :

W−1 = (δ + 1)/δ
W−2 = (2δ2 + 5δ + 2)/(2δ2)

W−3 = (3δ3 + 13δ2 + 13δ + 3)/(3δ3).

(28)

Their values for the Landau model (δ = 3) and the TGS one (δ = 3.17) are given by
W−1 = 4/3' 1.33,W−2 = 35/18' 1.94,W−3 = 80/27' 2.96 andW−1 ' 1.32,W−2 ' 1.89,
W−3 ' 2.83, respectively. The above comparison of the invariantsW±n given below formulae
(24) and (28) shows that the present model high- and low-temperature invariants(δ = 3.17)
are higher and lower than their Landau counterparts, respectively.

5. Conclusions

The proposed non-Landau model (1) for ferroelectric TGS is very simple, non-analytical in
the order parameter and non-perturbative. It cannot be derived from the existing theories
based on renormalization group calculations. To our knowledge, nobody has found an exact
solution even for the simplest cases—for example, the two-dimensional short-range Ising-type
model at non-zero external field. It is not clear at the present time what is so special about
TGS from a microscopic point of view that it would explain the form (1) of the free energy.
Even if one knew exactly which microscopic mechanism led to the non-analytical behaviour
of TGS, it would still be more difficult to find an exact solution than for the simplest Ising case.
The equation of state resulting from (1) possesses the Widom–Griffiths structure, and the two
constant coefficientsC2 andCδ+1 are the same for both ferroelectric and paraelectric phases.
It can be presented neither as a Landau expansion in mean-field theory nor as a Domb–Hunter
one due to the Griffiths analyticity condition [2] because of the difference in the electric field
behaviour of the susceptibility aboveTc between these theories and the present one. In other
words, the susceptibility arising from (17) and (19) is a function ofE2, but that derived from
equation (1) depends onEδ−1, even having a non-integer exponent,δ − 1 = 50/23' 2.17.
Therefore, the susceptibility derivatives of all orders starting from the third one are divergent
aboveTc in the zero-field limit. But this does not mean that the susceptibility itself is divergent
in this limit except whenT is approaching toTc. The low-temperature susceptibility is shown to
be an analytic function ofE. It is worth pointing out the similarities of and differences between
the behaviours of our model and previous ones. The common feature of these theories is that
the susceptibility is an analytic function ofE below Tc in all cases. The difference in the
behaviour ofχ becomes apparent aboveTc; χ is an analytic function ofE2 in the Landau and
Domb–Hunter cases, whereas this is not so for our model. Using the experimental values of the
exponentsγ = 1 andδ = 3.17, we predict from model (1) non-Landau values of the invariants
0+/0− > 2 andQ < 2 observed in experiments. We have found also several Watson invariants
characterizing the expansion of the susceptibility in powers ofE andH = Eδ−1 below and
aboveTc, respectively. The method used to determine the invariantQ from the experimental
susceptibility scaling data is presented for two examples: TGS and DTGS ferroelectrics. It
is stated that the nearly exact equation of state, in contrast to the approximate one, leads to a
single value of the invariantQ, which should be very close to the experimental one.
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